The «Multiple Form Logic» system seems to be compatible with «Pile Objects» and Erez Elul’s «Pile System» !

Venn diagrams (sometimes called Johnston diagr...
Image via Wikipedia

Erez Elul’s «Pile System» ( http://iswith.info ) is a «new, radically relationist approach to data, structures and computing. Instead of representing and storing data, Pile registers only relations between data elements and stores relational patterns in a novel, non-hierarchic layered structure which can be fluidly traversed«.

Well, I had never heard of the «Pile System» till recently (May 2007). Then, one day I used the phrase «Multiple Form Logic» in Google search, just in case there exist web references to it that have escaped my attention.

Well, it appears that Mr. Ralf Barkow, who is a Pile System researcher, has been exploring intriguing new relationships between «Multiple Form Logic» and «Pile-Objects«, since about a year ago. E.g. in the following blog-posting  Ralf deals with my «three axioms of Multiple Form Logic«, finding them compatible with Erez Elul’s «Pile»:

In another blog-post Ralf talks discusses my «First Axiom» (of Multiple Form Logic), re-expressing it in «Pile_objects» notation:

http://ralfbarkow.wordpress.com/2006/05/20/first-axiom-of-george-alexander-stahis-multiple-form-logic-as-pile_objects/

A , X # ( A, B)   =   A , X # B

Law of Perception

In a (self-) Boundary of Perception X, any-thing A that exists outside the boundary, can also be brought inside the boundary. Conversely, any-thing A that exists inside a boundary of perception X can also be cancelled out iff (if and only if) it (or a “copy of itself”) also exists outside the boundary X.

I.e.: Any-thing we see outside ourselves, we may assume inside ourselves. Any-thing we assume inside ourselves, we need not assume (as something «imaginary«) iff we can also see it (as a «fact») outside ourselves.

Well, I still can’t understand very well Pile System Notation (although working on it) but I feel pleased that my «Multiple Form Logic» system is now -apparently- regarded as a respectable generalization of George Spencer Brown‘s «Laws of Form«, as well as formally compatible with «Pile», etc.

There is also a short reference to «Multiple Form Logic» in Wikipedia, inside the lemma for George Spencer Brown, as follows:

http://en.wikipedia.org/wiki/G._Spencer-Brown

Recent extensions by «disciples»: Since 2003, a new web site (multiforms.netfirms.com, «Multiple Form Logic») claims to have «generalised Spencer-Brown‘s system into Multiple Truth Values» and to be «more consistent with Experience»; it uses the XOR operator and three «alternative axioms». The author is a member of the «Laws of Form Forum», where this theory (among others) was presented and discussed in recent years.

Reblog this post [with Zemanta]

One comment

  1. Αυτό το ποστ, είναι ο ΠΥΡΗΝΑΣ των ιδεών του blog. (τουλάχιστον όσον αφορά τη Φιλοσοφία και τη Λογική).

    Καλά Μιθρούγεννα και ένα ΜΕΓΑΛΟ ΕΥΧΑΡΙΣΤΩ στη φίλη μου, που βοήθησε στην κάλυψη των τελευταίων γεγονότων (και μου χάρισε εκ νέου το… βιβλίο του G.S.Brown – το οποίο είχα… χάσει πριν καιρό, σε μία μετακόμιση)….

Σχολιάστε

Εισάγετε τα παρακάτω στοιχεία ή επιλέξτε ένα εικονίδιο για να συνδεθείτε:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s